Tungsten Complex Induced Dehydration of 2,3-Dihydroxycarboxylic Acids to α-Keto Acids

Hye Kyung Bae Yu and Jeffrey Schwartz*

Department of Chemistry, Princeton University, Princeton NJ 08544-1009 USA

Abstract: In the absence of added base, WOCl4 induces rapid dehydration of the title compounds to give α -keto acids. A mechanism is suggested based on a neighboring group effect.

We have found a remarkable effect of base on the reaction between WOCl₄ and 2,3-dihydroxycarboxylic acids: as we previously noted,¹ dehydrative decarboxylation² of these substrates can be effected in high yield using W(VI) catalysis in the presence of TMEDA, either in relatively non-polar chlorobenzene or in polar acetonitrile; when base is omitted, the reaction pathway changes entirely to high yield, simple dehydration to the α -keto acid. In a typical procedure, a mixture of 0.015 g (0.10 mmol) of either *erythro*-³ or *threo*-2,3-dihydroxyhexanoic acid⁴, 0.034 g (0.10 mmol) of WOCl₄ and 0.70 mL of CD₃CN was prepared in an NMR tube under nitrogen, cooled by liq. N₂, evacuated, and sealed. Under these conditions, it was possible to observe (¹H NMR) chelate complexes of the acids and W-enol complex 1, the primary dehydration product of the acid,⁵ both of which formed rapidly at room temperature and which slowly hydrolyzed to the α -keto acid.

Scheme 1.

Overall dehydration also occurs for esters. For example, ethyl *threo*-2,3-dihydroxybutanoate (80 mg; 0.54 mmol) was treated with WOCl4 (92 mg; 0.27 mmol) in 11 ml of acetonitrile at room temperature; hydrolysis, filtration and analysis yielded ethyl 2-oxobutanoate (64 mg; 0.49 mmol; 91%). Under these conditions, neither the simple 3-hydroxycarboxylic acid nor its esters dehydrate.

t 0.5 equiv. WO		
CH ₃ CN r. t.	\rightarrow R ₁ R ₂ CH COOE	ť
Time (days)	Product	Yield (%) ^a
1	CH3CH2COCO2Et	91
1	CH ₃ (CH ₂) ₂ COCO ₂ Et	78
1	CH ₃ (CH ₂) ₂ COCO ₂ Et	81
3	(CH3)2CHCH2COCO2Et	84
3	(CH ₃) ₂ CHCOCO ₂ Et	81
	CH ₃ CN r. t. Time (days) 1 1 1 3	CH ₃ CN R ₁ R ₂ CH COOE r. t. r. t. Product 1 CH ₃ CH ₂ COCO ₂ Et 1 CH ₃ CH ₂ COCO ₂ Et 1 CH ₃ (CH ₂) ₂ COCO ₂ Et 1 CH ₃ (CH ₂) ₂ COCO ₂ Et 3 (CH ₃) ₂ CHCH ₂ COCO ₂ Et

Dehydration does not occur by general acid catalysis: *threo*-2,3-dihydroxyhexanoic acid was stable in CD₃CN to added aqueous HCl. WOCl₄ could activate an hydroxyl as a leaving group by direct coordination, or it could acidify an α -proton by carboxyl group coordination, or do both, by chelation. *Erythro*- and *threo*-2,3-dihydroxyhexanoic acids gave the same dehydration product 1;⁵ this suggests either that the dehydration step is not stereospecific or that 1 *E/Z* isomerizes. Dehydration of the 2,3-dihydroxy acid may occur through an epoxy acid intermediate followed by α -C-H bond deprotonation: When ethyl *trans*-2,3-epoxybutanoate 2 (R₁ = H, R₂ = CH₃) was treated with 1 equiv. of WOCl₄ in dry CD₃CN after 30 min at room temperature, both the enol ester of 1⁶ and tungsten-coordinated α -keto ester, 3,⁷ were formed (Scheme 2). Starting material was totally consumed after 4 hrs. When 1 equiv. of water was added to a mixture of ethyl *trans*-2,3-epoxybutanoate and 1 equiv. of WOCl₄ in CD₃CN, a third compound was also formed,⁸ assigned as a complex of ethyl *erythro*-2,3-dihydroxybutanoate formed by *anti* attack on the oxirane unit. Thus the epoxy ester and the ethyl 2,3-dihydroxycarboxylate may be in equilibrium in the presence of W catalysis. This complex slowly dehydrated to give W-coordinated α -keto ester and then the free product.

Scheme 2.

Two competing metal-assisted paths to the ketoacid may be envisaged, one involving the [3-OH,CO₂H] chelate¹ and the other the [2-OH,CO₂H] isomer. In either case, coordination of OH to W could activate that substituent as a leaving group; however, heterolytic -OH loss from [2-OH,CO₂H] seems less likely because of

the α -relationship of that -OH and the W-coordinated carboxylic carbonyl group (Scheme 3). In chlorobenzene for the cases studied, keto acids were formed readily >150°, and *erythro* and *threo* disasteromers were comparably reactive, ratewise. Qualitative rates for dehydration correlated inversely with the size of the substituent at C3, suggesting S_N2 attack at that carbon by 2-OH (path A). In contrast, in acetonitrile, substitution at C3 did not slow dehydration, suggesting an S_N1 type process (path B) in that more polar solvent.

The ratio of TMEDA to WOCl4 employed is critical to the success of either simple dehydration or dehydrative decarboxylation.¹ We note that at low WOCl4 : TMEDA, simple dehydration dominates, but at 1:3, this process is suppressed in either chlorobenzene or acetonitrile. In the reaction between 3-hydroxycarboxylic acids and WOCl4, amines do not coordinate to tungsten but act only as Brønsted bases.² Perhaps a high relative ratio of TMEDA to W suppresses simple dehydration by deprotonation of the epoxy intermediate 4 at oxygen, making subsequent α -C-H bond deprotonation unfavorable.

Acknowledgements. The authors acknowledge the National Institutes of Health for support of this research.

References and Notes

1. Bae Yu, H. K.; Schwartz, J. see the accompanying manuscript.

2. Tanzawa, T.; Schwartz, J. Organometallics 1990, 9, 3026.

3. Armstrong, F. B.; Lipscomb, E. E.; Crout, D. H. G.; Morgan, P. J. J. Chem. Soc., Perkin Trans. 1 1985, 691.

4. threo-2,3-Dihydroxyhexanoic acid was prepared from trans-2-hexenoic acid by osmolysis.

5. Both complexes 1 may be identical: from *threo*-2,3-dihydroxyhexanoic acid, ¹H NMR (solvent) $\delta 6.49$ (t, J = 8.4 Hz), 2.72 (q); from *erythro*-2,3-dihydroxyhexanoic acid, $\delta 6.50$ (t, J = 8.1 Hz), 2.72 (q); similarly from *threo*-2,3-dihydroxybutanoic acid, $\delta 6.51$ (q, J = 7.6 Hz), 2.39 (d); from *erythro*-2,3-dihydroxybutanoic acid, $\delta 6.54$ (q, J = 7.6 Hz), 2.39 (d).

6. Chemical shift data for 1-ester ($\delta 5.16$ [q, J = 6.6 Hz], 1.61 [d, J = 6.6 Hz]) were somewhat different from those of 1 and may be due to changes in preferred coordination geometries for the two types of carboxyl groups.

7. δ 3.41 (q, J = 6.9 Hz), 1.11 (t, J = 6.9 Hz); cf. for free ethyl 2-oxobutanote: δ 2.83 (q, J = 7.3 Hz), 1.03 (t, J = 7.3 Hz).

8. δ 5.70 (d, J = 10.5 Hz), 4.86 (dq, J = 6.9, 10.5 Hz), 1.33 (d, J = 6.9 Hz).

(Received in USA 16 June 1992; accepted 24 August 1992)